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Introduction

Results

Functional Connectivity (FC) refers to the statistical dependencies 
between the activity of distinct brain areas [1].

FC has shown significant potential as a biomarker in various 
studies, indicating its future applicability:

It varies between individuals and remains consistent within an 
individual, demonstrating its stability [2,3].

FC is associated with individual cognition and clinically relevant 
symptoms of mental disorders, highlighting its importance in 
research and clinical contexts [4,5].

High-dimensionality poses a challenge for FC as it often leads to 
overfitting, reducing its ability to generalize effectively, which is 
exacerbated by the typically limited size of MRI datasets due to 
expensive data acquisition [6].

Current approaches trying to deal with this tend to compress the 
data aggressively, potentially leading to loss of signal of interest.
Example: CPM [4]

for each subject:

Methods

Discussion

No advantage of stacking over baseline "connectome-wide" model 
fitting when confounds are not removed.

Advantage of stacking over baseline "connectome-wide" model 
fitting in the prediction of crystallised intelligence when removing 
confounds.

Next steps: 
    - attempt stacking in age prediction in an independent dataset
    - attempt more complex combination of model families in stacking

Objective: predict 3 cognitive targets in Human Connectome Project 
(HCP) [7] dataset (N = 968)

stacking_7: Yeo's 7 [8] networks are stacked by building a model for 
every set of between-network connections and every set of within-
network connections (all models are SVM's with RBF kernel)

baseline: "connectome-wide" model fitting 
(i.e. one model is fitted on all features; RBF SVM)

10-fold grouped cross-validation for evaluation of out-of-sample 
performance
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