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= ® Objective: predict 3 cognitive targets in Human Connectome Project
Introductlon (HCP) [7] dataset (N = 968)
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® Functional Connectivity (FC) refers to the statistical dependencies , | .
o | | | | every set of between-network connections and every set of within-
® FC has shown significant potential as a biomarker in various network connections (all models are SVM's with RBF kernel)
studies, indicating its future applicability:
® It varies between individuals and remains consistent within an ® baseline: "connectome-wide"” model fitting
individual, demonstrating its stability [2,3]. (I.e. one model is fitted on all features; RBF SVM)

® FC is associated with individual cognition and clinically relevant N .
symptoms of mental disorders, highlighting its importance in ® 10-fold grouped cross-validation for evaluation of out-of-sample

research and clinical contexts [4,5]. | performance y

® High-dimensionality poses a challenge for FC as it often leads to
overfitting, reducing its ability to generalize effectively, which is

exacerbated by the typically limited size of MRI datasets due to B N
expensive data acquisition [6]. Without confound regression With confound regression [ baseline
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] " u - ]
® Current approaches trying to deal with this tend to compress the T -
data aggressively, potentially leading to loss of signal of interest. 05
Example: CPM [4] _
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Yeo et al’'s (2011) Default Frontoparietal
M features/edges > Tal’get 7 networks
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sub- : | ' ® No advantage of stacking over baseline "connectome-wide" model
fitting when confounds are not removed.
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® Advantage of stacking over baseline "connectome-wide" model
fitting in the prediction of crystallised intelligence when removing
confounds.
. | ]
Model 1 ) Predictions Next steps:
(within Visual) " " . " " ]
- attempt stacking in age prediction in an independent dataset
- attempt more complex combination of model families in stacking
Model 2 i ~ti b /
(between Visual ~ Somatomotor) - Pred ICtIOhS / \
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